Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Front Immunol ; 15: 1334762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533492

RESUMO

Salmonella enterica serovar Typhi (S. Typhi), a human-restricted pathogen, invades the host through the gut to cause typhoid fever. Recent calculations of the typhoid fever burden estimated that more than 10 million new typhoid fever cases occur in low and middle-income countries, resulting in 65,400-187,700 deaths yearly. Interestingly, if not antibiotic-treated, upon the resolution of acute disease, 1%-5% of patients become asymptomatic chronic carriers. Chronically infected hosts are not only critical reservoirs of infection that transmit the disease to naive individuals but are also predisposed to developing gallbladder carcinoma. Nevertheless, the molecular mechanisms involved in the early interactions between gallbladder epithelial cells and S. Typhi remain largely unknown. Based on our previous studies showing that closely related S. Typhi strains elicit distinct innate immune responses, we hypothesized that host molecular pathways activated by S. Typhi strains derived from acutely and chronically infected patients would differ. To test this hypothesis, we used a novel human organoid-derived polarized gallbladder monolayer model, and S. Typhi strains derived from acutely and chronically infected patients. We found that S. Typhi strains derived from acutely and chronically infected patients differentially regulate host mitogen-activated protein kinase (MAPK) and S6 transcription factors. These variations might be attributed to differential cytokine signaling, predominantly via TNF-α and IL-6 production and appear to be influenced by the duration the isolate was subjected to selective pressures in the gallbladder. These findings represent a significant leap in understanding the complexities behind chronic S. Typhi infections in the gallbladder and may uncover potential intervention targets.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Vesícula Biliar/patologia , Infecção Persistente , Imunidade
2.
Vaccine ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38036392

RESUMO

The global public health nonprofit organization PATH hosted the third Vaccines Against Shigella and Enterotoxigenic Escherichia coli (VASE) Conference in Washington, DC, from November 29 to December 1, 2022. This international gathering focused on cutting-edge research related to the development of vaccines against neglected diarrheal pathogens including Shigella, enterotoxigenic Escherichia coli (ETEC), Campylobacter, and non-typhoidal Salmonella. In addition to the conference's plenary content, the agenda featured ten breakout workshops on topics of importance to the enteric vaccine field. This unique aspect of VASE Conferences allows focused groups of attendees to engage in in-depth discussions on subjects of interest to the enteric vaccine development community. In 2022, the workshops covered a range of topics. Two focused on the public health value of enteric vaccines, with one examining how to translate evidence into policy and the other on the value proposition of potential combination vaccines against bacterial enteric pathogens. Two more workshops explored new tools for the development and evaluation of vaccines, with the first on integrating antigen/antibody technologies for mucosal vaccine and immunoprophylactic development, and the second on adjuvants specifically for Shigella vaccines for children in low- and middle-income countries. Another pair of workshops covered the status of vaccines against two emerging enteric pathogens, Campylobacter and invasive non-typhoidal Salmonella. The remaining four workshops examined the assessment of vaccine impact on acute and long-term morbidity. These included discussions on the nature and severity of intestinal inflammation; cellular immunity and immunological memory in ETEC and Shigella infections; clinical and microbiologic endpoints for Shigella vaccine efficacy studies in children; and intricacies of protective immunity to enteric pathogens. This article provides a brief summary of the presentations and discussions at each workshop in order to share these sessions with the broader enteric vaccine field.

3.
Front Immunol ; 14: 1291664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022674

RESUMO

Shigellosis is common worldwide, and it causes significant morbidity and mortality mainly in young children in low- and middle- income countries. To date, there are not broadly available licensed Shigella vaccines. A novel type of conjugate vaccine candidate, SF2a-TT15, was developed against S. flexneri serotype 2a (SF2a). SF2a-TT15 is composed of a synthetic 15mer oligosaccharide, designed to act as a functional mimic of the SF2a O-antigen and covalently linked to tetanus toxoid (TT). SF2a-TT15 was recently shown to be safe and immunogenic in a Phase 1 clinical trial, inducing specific memory B cells and sustained antibody response up to three years after the last injection. In this manuscript, we advance the study of B cell responses to parenteral administration of SF2a-TT15 to identify SF2a LPS-specific B cells (SF2a+ B cells) using fluorescently labeled bacteria. SF2a+ B cells were identified mainly within class-switched B cells (SwB cells) in volunteers vaccinated with SF2a-TT15 adjuvanted or not with aluminium hydroxide (alum), but not in placebo recipients. These cells expressed high levels of CXCR3 and low levels of CD21 suggesting an activated phenotype likely to represent the recently described effector memory B cells. IgG SF2a+ SwB cells were more abundant than IgA SF2a + SwB cells. SF2a+ B cells were also identified in polyclonally stimulated B cells (antibody secreting cells (ASC)-transformed). SF2a+ ASC-SwB cells largely maintained the activated phenotype (CXCR3 high, CD21 low). They expressed high levels of CD71 and integrin α4ß7, suggesting a high proliferation rate and ability to migrate to gut associated lymphoid tissues. Finally, ELISpot analysis showed that ASC produced anti-SF2a LPS IgG and IgA antibodies. In summary, this methodology confirms the ability of SF2a-TT15 to induce long-lived memory B cells, initially identified by ELISpots, which remain identifiable in blood up to 140 days following vaccination. Our findings expand and complement the memory B cell data previously reported in the Phase 1 trial and provide detailed information on the immunophenotypic characteristics of these cells. Moreover, this methodology opens the door to future studies at the single-cell level to better characterize the development of B cell immunity to Shigella.


Assuntos
Vacinas contra Shigella , Shigella , Pré-Escolar , Humanos , Voluntários Saudáveis , Imunoglobulina A , Imunoglobulina G , Lipopolissacarídeos , Células B de Memória , Sorogrupo , Shigella flexneri , Vacinas Sintéticas , Ensaios Clínicos Fase I como Assunto
4.
Front Immunol ; 14: 1190339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207226

RESUMO

Introduction: Non-typhoidal Salmonella (NTS) is responsible for a high burden of foodborne infections and deaths worldwide. In the United States, NTS infections are the leading cause of hospitalizations and deaths due to foodborne illnesses, and older adults (≥65 years) are disproportionately affected by Salmonella infections. Due to this public health concern, we have developed a live attenuated vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), against Salmonella enterica serovar Typhimurium, a common serovar of NTS. Little is known about the effect of age on oral vaccine responses, and due to the decline in immune function with age, it is critical to evaluate vaccine candidates in older age groups during early product development. Methods: In this study, adult (six-to-eight-week-old) and aged (18-month-old) C57BL/6 mice received two doses of CVD 1926 (109 CFU/dose) or PBS perorally, and animals were evaluated for antibody and cell-mediated immune responses. A separate set of mice were immunized and then pre-treated with streptomycin and challenged orally with 108 CFU of wild-type S. Typhimurium SL1344 at 4 weeks postimmunization. Results: Compared to PBS-immunized mice, adult mice immunized with CVD 1926 had significantly lower S. Typhimurium counts in the spleen, liver, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of vaccinated versus PBS aged mice. Aged mice exhibited reduced Salmonella-specific antibody titers in the serum and feces following immunization with CVD 1926 compared to adult mice. In terms of T cell responses (T-CMI), immunized adult mice showed an increase in the frequency of IFN-γ- and IL-2-producing splenic CD4 T cells, IFN-γ- and TNF-α-producing Peyer's Patch (PP)-derived CD4 T cells, and IFN-γ- and TNF-α-producing splenic CD8 T cells compared to adult mice administered PBS. In contrast, in aged mice, T-CMI responses were similar in vaccinated versus PBS mice. CVD 1926 elicited significantly more PP-derived multifunctional T cells in adult compared to aged mice. Conclusion: These data suggest that our candidate live attenuated S. Typhimurium vaccine, CVD 1926, may not be sufficiently protective or immunogenic in older humans and that mucosal responses to live-attenuated vaccines decrease with increasing age.


Assuntos
Doenças Cardiovasculares , Infecções por Salmonella , Vacinas contra Salmonella , Salmonella enterica , Vacinas Tíficas-Paratíficas , Humanos , Camundongos , Animais , Idoso , Lactente , Vacinas Atenuadas , Sorogrupo , Fator de Necrose Tumoral alfa , Camundongos Endogâmicos C57BL , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium
5.
Clin Exp Immunol ; 213(3): 339-356, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37070830

RESUMO

Previous work has shown that Secretory-IgA (SIgA) binding to the intestinal microbiota is variable and may regulate host inflammatory bowel responses. Nevertheless, the impact of the SIgA functional binding to the microbiota remains largely unknown in preterm infants whose immature epithelial barriers make them particularly susceptible to inflammation. Here, we investigated SIgA binding to intestinal microbiota isolated from stools of preterm infants <33 weeks gestation with various levels of intestinal permeability. We found that SIgA binding to intestinal microbiota attenuates inflammatory reactions in preterm infants. We also observed a significant correlation between SIgA affinity to the microbiota and the infant's intestinal barrier maturation. Still, SIgA affinity was not associated with developing host defenses, such as the production of mucus and inflammatory calprotectin protein, but it depended on the microbiota shifts as the intestinal barrier matures. In conclusion, we reported an association between the SIgA functional binding to the microbiota and the maturity of the preterm infant's intestinal barrier, indicating that the pattern of SIgA coating is altered as the intestinal barrier matures.

6.
Front Nutr ; 10: 1286138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283907

RESUMO

Pectins, a class of dietary fibers abundant in vegetables and fruits, have drawn considerable interest due to their potential anti-inflammatory properties. Numerous studies have indicated that incorporating pectins into infant formula could be a safe strategy for alleviating infant regurgitation and diarrhea. Moreover, pectins have been shown to modulate cytokine production, macrophage activity, and NF-kB expression, all contributing to their anti-inflammatory effects. Despite this promising evidence, the exact mechanisms through which pectins exert these functions and how their structural characteristics influence these processes remain largely unexplored. This knowledge is particularly significant in the context of gut inflammation in developing preterm babies, a critical aspect of necrotizing enterocolitis (NEC), and in children and adults dealing with inflammatory bowel disease (IBD). Our mini review aims to provide an up-to-date compilation of relevant research on the effects of pectin on gut immune responses, specifically focusing on preterms and newborns. By shedding light on the underlying mechanisms and implications of pectin-mediated anti-inflammatory properties, this review seeks to advance our knowledge in this area and pave the way for future research and potential therapeutic interventions.

7.
J Immunol ; 209(10): 1950-1959, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426935

RESUMO

The mechanisms by which TLR4-based adjuvants enhance immunogenicity are not fully understood. We have taken advantage of a novel knock-in mouse strain that homozygously expresses two single-nucleotide polymorphisms (SNPs) that are homologous to human TLR4 (rs4986790 and rs4986791) and have been associated with LPS hyporesponsiveness in vivo and in vitro. TLR4-SNP (coexpressing mutations D298G/N397I in TLR4) mice that recapitulate the human phenotype were compared with wild-type (WT) mice for their hapten-specific Ab responses after immunization with hapten 4-hydroxy-3-nitrophenyl acetyl (NP) NP-Ficoll or NP-OVA in the absence or presence of a water-soluble TLR4 analog adjuvant, E6020. IgM and IgG anti-NP responses were comparable in WT and TLR4-SNP mice after immunization with either NP-Ficoll or NP-OVA only. E6020 significantly yet transiently improved the IgM and IgG anti-NP responses of both WT and TLR4-SNP mice to NP-Ficoll (T-independent), with modestly enhanced Ab production in WT mice. In contrast, T-dependent (NP-OVA), adjuvant-enhanced responses showed sustained elevation of NP-specific Ab titers in WT mice, intermediate responses in TLR4-SNP mice, and negligible enhancement in TLR4-/- mice. E6020-enhanced early humoral responses in WT and TLR4-SNP mice to NP-OVA favored an IgG1 response. After a second immunization, however, the immune responses of TLR4-SNP mice remained IgG1 dominant, whereas WT mice reimmunized with NP-OVA and E6020 exhibited increased anti-NP IgG2c titers and a sustained increase in the IgG1 and IgG2c production by splenocytes. These findings indicate that E6020 increases and sustains Ab titers and promotes isotype class switching, as evidenced by reduced titers and IgG1-dominant immune responses in mice with TLR4 insufficiency.


Assuntos
Switching de Imunoglobulina , Receptor 4 Toll-Like , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Ficoll , Haptenos , Imunização , Imunoglobulina G , Imunoglobulina M , Receptor 4 Toll-Like/genética
8.
Front Microbiol ; 13: 983403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204615

RESUMO

Enteric infectious diseases account for more than a billion disease episodes yearly worldwide resulting in approximately 2 million deaths, with children under 5 years old and the elderly being disproportionally affected. Enteric pathogens comprise viruses, parasites, and bacteria; the latter including pathogens such as Salmonella [typhoidal (TS) and non-typhoidal (nTS)], cholera, Shigella and multiple pathotypes of Escherichia coli (E. coli). In addition, multi-drug resistant and extensively drug-resistant (XDR) strains (e.g., S. Typhi H58 strain) of enteric bacteria are emerging; thus, renewed efforts to tackle enteric diseases are required. Many of these entero-pathogens could be controlled by oral or parenteral vaccines; however, development of new, effective vaccines has been hampered by lack of known immunological correlates of protection (CoP) and limited knowledge of the factors contributing to protective responses. To fully comprehend the human response to enteric infections, an invaluable tool that has recently re-emerged is the use of controlled human infection models (CHIMs) in which participants are challenged with virulent wild-type (wt) organisms. CHIMs have the potential to uncover immune mechanisms and identify CoP to enteric pathogens, as well as to evaluate the efficacy of therapeutics and vaccines in humans. CHIMs have been used to provide invaluable insights in the pathogenesis, host-pathogen interaction and evaluation of vaccines. Recently, several Oxford typhoid CHIM studies have been performed to assess the role of multiple cell types (B cells, CD8+ T, Tregs, MAIT, Monocytes and DC) during S. Typhi infection. One of the key messages that emerged from these studies is that baseline antigen-specific responses are important in that they can correlate with clinical outcomes. Additionally, volunteers who develop typhoid disease (TD) exhibit higher levels and more activated cell types (e.g., DC and monocytes) which are nevertheless defective in discrete signaling pathways. Future critical aspects of this research will involve the study of immune responses to enteric infections at the site of entry, i.e., the intestinal mucosa. This review will describe our current knowledge of immunity to enteric fevers caused by S. Typhi and S. Paratyphi A, with emphasis on the contributions of CHIMs to uncover the complex immunological responses to these organisms and provide insights into the determinants of protective immunity.

9.
Am J Trop Med Hyg ; 107(2): 315-319, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35895583

RESUMO

We used a protein microarray featuring Plasmodium falciparum field variants of a merozoite surface antigen to examine malaria exposure in Malian children with different severe malaria syndromes. Unlike children with cerebral malaria alone or severe malarial anemia alone, those with concurrent cerebral malaria and severe malarial anemia had serologic responses demonstrating a broader prior parasite exposure pattern than matched controls with uncomplicated disease. Comparison of levels of malaria-related cytokines revealed that children with the concurrent phenotype had elevated levels of interleukin (IL)-6, IL-8, and IL-10. Our results suggest that the pathophysiology of this severe subtype is unique and merits further investigation.


Assuntos
Anemia , Malária Cerebral , Malária Falciparum , Humanos , Malária Cerebral/complicações , Plasmodium falciparum , Citocinas , Anemia/etiologia , Interleucina-6
10.
Cell Immunol ; 378: 104572, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772315

RESUMO

We have previously demonstrated that Mucosal-Associated Invariant T (MAIT) cells secrete multiple cytokines after exposure to Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. However, whether cytokine secreting MAIT cells can enhance or attenuate the clinical severity of bacterial infections remain debatable. This study characterizes human MAIT cell functions in subjects participating in a wild-type S. Typhi human challenge model. Here, we found that MAIT cells exhibit distinct functional signatures associated with protection against typhoid fever. We also observed that the cytokine patterns of MAIT cell responses, rather than the average number of cytokines expressed, are more predictive of typhoid fever outcomes. These results might enable us to objectively, based on functional parameters, identify cytokine patterns that may serve as predictive biomarkers during natural infection and vaccination.


Assuntos
Células T Invariantes Associadas à Mucosa , Febre Tifoide , Citocinas , Humanos , Salmonella typhi/fisiologia , Febre Tifoide/microbiologia , Febre Tifoide/prevenção & controle , Vacinação
11.
Front Immunol ; 12: 728685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659215

RESUMO

Mucosal-associated invariant T (MAIT) cells are an innate-like population of T cells that display a TCR Vα7.2+ CD161+ phenotype and are restricted by the nonclassical MHC-related molecule 1 (MR1). Although B cells control MAIT cell development and function, little is known about the mechanisms underlying their interaction(s). Here, we report, for the first time, that during Salmonella enterica serovar Typhi (S. Typhi) infection, HLA-G expression on B cells downregulates IFN-γ production by MAIT cells. In contrast, blocking HLA-G expression on S. Typhi-infected B cells increases IFN-γ production by MAIT cells. After interacting with MAIT cells, kinetic studies show that B cells upregulate HLA-G expression and downregulate the inhibitory HLA-G receptor CD85j on MAIT cells resulting in their loss. These results provide a new role for HLA-G as a negative feedback loop by which B cells control MAIT cell responses to antigens.


Assuntos
Antígenos CD/metabolismo , Linfócitos B/metabolismo , Antígenos HLA-G/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/metabolismo , Adulto , Antígenos CD/genética , Linfócitos B/imunologia , Linfócitos B/microbiologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Cinética , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/microbiologia , Fenótipo , Salmonella typhi/imunologia , Transdução de Sinais , Febre Tifoide/genética , Febre Tifoide/imunologia , Febre Tifoide/microbiologia , Adulto Jovem
12.
Infect Immun ; 89(10): e0008721, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310885

RESUMO

Salmonella Typhimurium is a common cause of foodborne gastroenteritis and a less frequent but important cause of invasive disease, especially in developing countries. In our previous work, we showed that a live-attenuated S. Typhimurium vaccine (CVD 1921) was safe and immunogenic in rhesus macaques, although shed for an unacceptably long period (10 days) postimmunization. Consequently, we engineered a new strain, CVD 1926, which was shown to be safe and immunogenic in mice, as well as less reactogenic in mice and human cell-derived organoids than CVD 1921. In this study, we assessed the reactogenicity and efficacy of CVD 1926 in rhesus macaques. Animals were given two doses of either CVD 1926 or saline perorally. The vaccine was well-tolerated, with shedding in stool limited to a mean of 5 days. All CVD 1926-immunized animals had both a serological and a T cell response to vaccination. At 4 weeks postimmunization, animals were challenged with wild-type S. Typhimurium I77. Unvaccinated (saline) animals had severe diarrhea, with two animals succumbing to infection. Animals receiving CVD 1926 were largely protected, with only one animal having moderate diarrhea. Vaccine efficacy in this gastroenteritis model was 80%. S. Typhimurium vaccine strain CVD 1926 was safe and effective in rhesus macaques and shed for a shorter period than other previously tested live-attenuated vaccine strains. This strain could be combined with other live-attenuated Salmonella vaccine strains to create a pan-Salmonella vaccine.


Assuntos
Gastroenterite/imunologia , Imunogenicidade da Vacina/imunologia , Macaca mulatta/imunologia , Salmonelose Animal/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Administração Oral , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Leucócitos Mononucleares/imunologia , Vacinação/métodos
13.
Nat Commun ; 12(1): 3696, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140472

RESUMO

Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.


Assuntos
Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Pele/parasitologia , Carrapatos/metabolismo , Carrapatos/microbiologia , Anaplasma phagocytophilum/patogenicidade , Animais , Artrópodes/metabolismo , Artrópodes/microbiologia , Artrópodes/fisiologia , Linhagem Celular , Dermacentor/metabolismo , Dermacentor/microbiologia , Dermacentor/fisiologia , Vesículas Extracelulares/ultraestrutura , Francisella tularensis/patogenicidade , Ontologia Genética , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/parasitologia , Microscopia Intravital , Ixodes/metabolismo , Ixodes/microbiologia , Ixodes/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteômica , Proteínas R-SNARE/metabolismo , Pele/imunologia , Pele/microbiologia , Linfócitos T/metabolismo , Espectrometria de Massas em Tandem , Proteína 2 Associada à Membrana da Vesícula/metabolismo
14.
Microbiol Spectr ; 9(1): e0000321, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34106568

RESUMO

Gastrointestinal infections cause significant morbidity and mortality worldwide. The complexity of human biology and limited insights into host-specific infection mechanisms are key barriers to current therapeutic development. Here, we demonstrate that two-dimensional epithelial monolayers derived from human intestinal organoids, combined with in vivo-like bacterial culturing conditions, provide significant advancements for the study of enteropathogens. Monolayers from the terminal ileum, cecum, and ascending colon recapitulated the composition of the gastrointestinal epithelium, in which several techniques were used to detect the presence of enterocytes, mucus-producing goblet cells, and other cell types following differentiation. Importantly, the addition of receptor activator of nuclear factor kappa-B ligand (RANKL) increased the presence of M cells, critical antigen-sampling cells often exploited by enteric pathogens. For infections, bacteria were grown under in vivo-like conditions known to induce virulence. Overall, interesting patterns of tissue tropism and clinical manifestations were observed. Shigella flexneri adhered efficiently to the cecum and colon; however, invasion in the colon was best following RANKL treatment. Both Salmonella enterica serovars Typhi and Typhimurium displayed different infection patterns, with S. Typhimurium causing more destruction of the terminal ileum and S. Typhi infecting the cecum more efficiently than the ileum, particularly with regard to adherence. Finally, various pathovars of Escherichia coli validated the model by confirming only adherence was observed with these strains. This work demonstrates that the combination of human-derived tissue with targeted bacterial growth conditions enables powerful analyses of human-specific infections that could lead to important insights into pathogenesis and accelerate future vaccine development. IMPORTANCE While traditional laboratory techniques and animal models have provided valuable knowledge in discerning virulence mechanisms of enteric pathogens, the complexity of the human gastrointestinal tract has hindered our understanding of physiologically relevant, human-specific interactions; and thus, has significantly delayed successful vaccine development. The human intestinal organoid-derived epithelial monolayer (HIODEM) model closely recapitulates the diverse cell populations of the intestine, allowing for the study of human-specific infections. Differentiation conditions permit the expansion of various cell populations, including M cells that are vital to immune recognition and the establishment of infection by some bacteria. We provide details of reproducible culture methods and infection conditions for the analyses of Shigella, Salmonella, and pathogenic Escherichia coli in which tissue tropism and pathogen-specific infection patterns were detected. This system will be vital for future studies that explore infection conditions, health status, or epigenetic differences and will serve as a novel screening platform for therapeutic development.


Assuntos
Técnicas de Cultura de Células/métodos , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/fisiologia , Trato Gastrointestinal/microbiologia , Organoides/microbiologia , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Enterócitos/microbiologia , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Epitélio/microbiologia , Trato Gastrointestinal/citologia , Humanos , Organoides/citologia , Virulência
15.
Genome Biol ; 22(1): 154, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985562

RESUMO

BACKGROUND: The majority of pancreatic ductal adenocarcinomas (PDAC) are diagnosed at the metastatic stage, and standard therapies have limited activity with a dismal 5-year survival rate of only 8%. The liver and lung are the most common sites of PDAC metastasis, and each have been differentially associated with prognoses and responses to systemic therapies. A deeper understanding of the molecular and cellular landscape within the tumor microenvironment (TME) metastasis at these different sites is critical to informing future therapeutic strategies against metastatic PDAC. RESULTS: By leveraging combined mass cytometry, immunohistochemistry, and RNA sequencing, we identify key regulatory pathways that distinguish the liver and lung TMEs in a preclinical mouse model of metastatic PDAC. We demonstrate that the lung TME generally exhibits higher levels of immune infiltration, immune activation, and pro-immune signaling pathways, whereas multiple immune-suppressive pathways are emphasized in the liver TME. We then perform further validation of these preclinical findings in paired human lung and liver metastatic samples using immunohistochemistry from PDAC rapid autopsy specimens. Finally, in silico validation with transfer learning between our mouse model and TCGA datasets further demonstrates that many of the site-associated features are detectable even in the context of different primary tumors. CONCLUSIONS: Determining the distinctive immune-suppressive features in multiple liver and lung TME datasets provides further insight into the tissue specificity of molecular and cellular pathways, suggesting a potential mechanism underlying the discordant clinical responses that are often observed in metastatic diseases.


Assuntos
Genômica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Transdução de Sinais , Microambiente Tumoral/imunologia , Animais , Autopsia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Imunossupressão , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Linfócitos T/imunologia , Microambiente Tumoral/genética
16.
Immun Ageing ; 18(1): 19, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874975

RESUMO

BACKGROUND: The impact of aging on the immune system is unequivocal and results in an altered immune status termed immunosenescence. In humans, the mechanisms of immunosenescence have been examined almost exclusively in blood. However, most immune cells are present in tissue compartments and exhibit differential cell (e.g., memory T cells -TM) subset distributions. Thus, it is crucial to understand immunosenescence in tissues, especially those that are exposed to pathogens (e.g., intestine). Using a human model of oral live attenuated typhoid vaccine, Ty21a, we investigated the effect of aging on terminal ileum (TI) tissue resident memory T (TRM) cells. TRM provide immediate adaptive effector immune responsiveness at the infection site. However, it is unknown whether aging impacts TRM S. Typhi-responsive cells at the site of infection (e.g., TI). Here, we determined the effect of aging on the induction of TI S. Typhi-responsive TRM subsets elicited by Ty21a immunization. RESULTS: We observed that aging impacts the frequencies of TI-lamina propria mononuclear cells (LPMC) TM and TRM in both Ty21a-vaccinated and control groups. In unvaccinated volunteers, the frequencies of LPMC CD103- CD4+ TRM displayed a positive correlation with age whilst the CD4/CD8 ratio in LPMC displayed a negative correlation with age. We observed that elderly volunteers have weaker S. Typhi-specific mucosal immune responses following Ty21a immunization compared to adults. For example, CD103+ CD4+ TRM showed reduced IL-17A production, while CD103- CD4+ TRM exhibited lower levels of IL-17A and IL-2 in the elderly than in adults following Ty21a immunization. Similar results were observed in LPMC CD8+ TRM and CD103- CD8+ T cell subsets. A comparison of multifunctional (MF) profiles of both CD4+ and CD8+ TRM subsets between elderly and adults also showed significant differences in the quality and quantity of elicited single (S) and MF responses. CONCLUSIONS: Aging influences tissue resident TM S. Typhi-specific responses in the terminal ileum following oral Ty21a-immunization. This study is the first to provide insights in the generation of local vaccine-specific responses in the elderly population and highlights the importance of evaluating tissue immune responses in the context of infection and aging. TRIAL REGISTRATION: This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifier NCT03970304 , Registered 29 May 2019 - Retrospectively registered).

17.
Clin Transl Immunology ; 10(1): e1239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505681

RESUMO

OBJECTIVES: Francisella tularensis, the causative agent of tularaemia, is an exceptionally infectious bacterium, potentially fatal for humans if left untreated and with the potential to be developed as a bioweapon. Both natural infection and live-attenuated vaccine strain (LVS) confer good protection against tularaemia. LVS vaccination is traditionally administered by scarification, and the formation of a cutaneous reaction or take at the vaccination site is recognised as a clinical correlate of protection. Although previous studies have suggested that high antibody titres following vaccination might serve as a useful surrogate marker, the immunological correlates of protection remain unknown. METHODS: We investigated the host T-cell-mediated immune (T-CMI) responses elicited following immunisation with LVS vaccine formulated by the DynPort Vaccine Company (DVC-LVS) or the United States Army Medical Research Institute of Infectious Diseases (USAMRIID-LVS). We compared T-CMI responses prompted by these vaccines and correlated them with take size. RESULTS: We found that both LVS vaccines elicited similar T-CMI responses. Interestingly, take size associated with the T cells' ability to proliferate, secrete IFN-γ and mobilise degranulation, suggesting that these responses play an essential role in tularaemia protection. CONCLUSIONS: These results renew the appreciation for vaccination through the scarification as a prime route of inoculation to target pathogens driving specific T-CMI responses and provide further evidence that T-CMI plays a role in protection from tularaemia.

19.
Clin Transl Immunology ; 9(9): e1178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005416

RESUMO

OBJECTIVE: There are no vaccines for most of the major invasive Salmonella strains causing severe infection in humans. We evaluated the specificity of adaptive T memory cell responses generated after Salmonella Typhi exposure in humans against other major invasive Salmonella strains sharing capacity for dissemination. METHODS: T memory cells from eleven volunteers who underwent controlled oral challenge with wt S. Typhi were characterised by flow cytometry for cross-reactive cellular cytokine/chemokine effector responses or evidence of degranulation upon stimulation with autologous B-lymphoblastoid cells infected with either S. Typhi, Salmonella Paratyphi A (PA), S. Paratyphi B (PB) or an invasive nontyphoidal Salmonella strain of the S. Typhimurium serovar (iNTSTy). RESULTS: Blood T-cell effector memory (TEM) responses after exposure to S. Typhi in humans evolve late, peaking weeks after infection in most volunteers. Induced multifunctional CD4+ Th1 and CD8+ TEM cells elicited after S. Typhi challenge were cross-reactive with PA, PB and iNTSTy. The magnitude of multifunctional CD4+ TEM cell responses to S. Typhi correlated with induction of cross-reactive multifunctional CD8+ TEM cells against PA, PB and iNTSTy. Highly multifunctional subsets and T central memory and T effector memory cells that re-express CD45 (TEMRA) demonstrated less heterologous T-cell cross-reactivity, and multifunctional Th17 elicited after S. Typhi challenge was not cross-reactive against other invasive Salmonella. CONCLUSION: Gaps in cross-reactive immune effector functions in human T-cell memory compartments were highly dependent on invasive Salmonella strain, underscoring the importance of strain-dependent vaccination in the design of T-cell-based vaccines for invasive Salmonella.

20.
Sci Rep ; 10(1): 13581, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788681

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) causes substantial morbidity and mortality worldwide, particularly among young children. Humans develop an array of mucosal immune responses following S. Typhi infection. Whereas the cellular mechanisms involved in S. Typhi infection have been intensively studied, very little is known about the early chromatin modifications occurring in the human gut microenvironment that influence downstream immune responses. To address this gap in knowledge, cells isolated from human terminal ileum exposed ex vivo to the wild-type S. Typhi strain were stained with a 33-metal-labeled antibody panel for mass cytometry analyses of the early chromatin modifications modulated by S. Typhi. We measured the cellular levels of 6 classes of histone modifications, and 1 histone variant in 11 major cell subsets (i.e., B, CD3 + T, CD4 + T, CD8 + T, NK, TCR-γδ, Mucosal associated invariant (MAIT), and NKT cells as well as monocytes, macrophages, and epithelial cells). We found that arginine methylation might regulate the early-differentiation of effector-memory CD4+ T-cells following exposure to S. Typhi. We also found S. Typhi-induced post-translational modifications in histone methylation and acetylation associated with epithelial cells, NKT, MAIT, TCR-γδ, Monocytes, and CD8 + T-cells that are related to both gene activation and silencing.


Assuntos
Epigênese Genética/imunologia , Íleo/imunologia , Imunidade nas Mucosas/imunologia , Mucosa/imunologia , Salmonella typhi/imunologia , Febre Tifoide/imunologia , Acetilação , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Epigênese Genética/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Microbioma Gastrointestinal/imunologia , Código das Histonas , Humanos , Íleo/citologia , Íleo/microbiologia , Imunidade nas Mucosas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Metilação , Mucosa/metabolismo , Salmonella typhi/fisiologia , Febre Tifoide/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...